Cs-Si (Cesium-Silicon) System

James Sangster

Equilibrium Diagram

Information on this system was reviewed by [2001Bor]. No phase diagram has been reported. A number of studies [1962Hol, 1963Hol, 1963Ked, 1965 Win] investigated the corrosion of materials (including Si) by Cs at high temperature in the context of ion propulsion. The purpose of these studies was not the determination of solubility, and no solubility data are available from them. In cesium ion bombardment of silicon experiments [1963Mcc], the maximum solubility of Cs in solid Si at 500 °C was estimated to be 10^{15} atoms cm⁻³. Based on a density of solid Si of 2.32 g cm⁻³, this is equivalent to a Cs atom fraction of 2×10^{-8} .

CsSi was prepared by direct combination of the elements at 600-650 °C [1948Hoh, 1961 Sch] and was characterized by single-crystal x-ray diffraction (XRD) [1948Hoh, 1961Bus, 1961 Sch]. The thermal decomposition of CsSi above 350 °C [1948Hoh, 1961Sch] yielded a compound of approximate stoichiometry CsSi₈. That this was a species different from the starting material was verified by its unindexed powder XRD pattern [1948Hoh]. More careful decomposition [1998Sch] led to the identification of a number of transient phases, such as Cs_4Si_9 , $Cs_{12}Si_{17}$, and clathrate phases Cs_8Si_{46} and Cs_xSi_{136} . These phases were identified by a combination of thermogravimetric and Raman spectroscopic methods and quantum chemical calculations [1998Sch].

Like NaSi and KSi, CsSi was partially decomposed by heating under argon to prepare Cs_7Si_{136} [1970Cro], which was characterized by XRD [1970Cro].

Crystal Structures and Lattice Parameters

Crystal structure and lattice parameters are presented in Tables 1 and 2, respectively.

CsSi is isostructural with KSi and RbSi and contains isolated Si₄ tetrahedra surrounded by Cs atoms. Each Cs atom has four Si₄ groups associated with it, arranged tetrahedrally [1961Bus]. The Si₄ groups are entirely analogous to those of other Group IV A elements Ge₄, Sn₄, and Pb₄ [1985Sch]. For this reason, CsSi is sometimes written as Cs₄Si₄.

Cs₇Si₁₃₆ is analogous to one member of the series of

Phase	Composition, at.% Si	Lattice parameter, nm <i>a</i>	Reference
Cs	0	0.6141	[King1]
CsSi	50.0	1.350	[1961Bus, 1961Sch]
Cs ₇ Si ₁₃₆	95.1	1.464	[1970Cro]
Si	100	0.54306	[King1]

 Table 2
 Cs-Si lattice parameter data

compounds Na_xSi₁₃₆ (0 < x < 24). Such a series is structurally similar to gas and liquid hydrate calathrate compounds, for example 16H₂S·8CHCl₃·136H₂O [1970Cro]. The Si atoms form "cages," which may contain (to varying extent) guest molecules. The unit cubic cell of Me₂₄Si₁₃₆ may be described [1970Cro] as arising from the juxtaposition of 16 pentagonal dodecahedra and eight 16-sided polyhedra. In Cs₇Si₁₃₆, the Si cages are of two types, the larger of which can accommodate Cs atoms to a maximum of eight. The 16 smaller cages apparently remain unoccupied [1970Cro].

References

- **1948Hoh:** E. Hohmann, Silicides and Germanides of the Alkali Metals, *Z. Anorg. Allg. Chem.*, 1948, **257**(1-3), p 113-126, in German (Equi Diagram; Crys Structure; Experimental)
- **1961Bus:** E. Busmann, The Crystal Structures of KSi, RbSi, CsSi, KGe, RbGe and CsGe, *Z. Anorg. Allg. Chem.*, 1961, **313**(1-2), p 90-106, in German (Equi Diagram; Crys Styructure; Experimental)
- **1961Sch:** R. Schäfer and W. Klemm, Further Notes on the Silicides and Germanides of the Alkali Metals, *Z. Anorg. Allg. Chem.*, 1961, **312**(3-4), p 214-220, in German (Equi Diagram; Crys Structure; Experimental)
- **1962Hol:** J.H. Holley, G.R. Neff, F.B. Weiler, and P.M. Winslow, Corrosivity and Contamination of Cesium in Ion Propulsion, NASA Document N62-15904, 1962, p 23 (Equi Diagram; Experimental)
- **1963Hol:** J.H. Holley, G.R. Neff, F.B. Weiler, and P.M. Winslow, Corrosivity and Contamination of Cesium in Ion Propulsion, *Prog. Astronaut. Aeronaut.*, 1963, **9**, p 341-356 (Equi Diagram; Experimental)
- 1963Ked: E.S. Keddy, Compatibility Evaluation of Materials with

Phase	Composition, at.% Si	Pearson symbol	Space group	Strukturbericht designation	Prototype	Reference
Cs	0	cI2	Im3m	A2	W	[King1]
CsSi	50.0	<i>cP</i> 64	P43n		GeK	[1961Bus, 1961Sch]
Cs7Si136	95.1	cF143	$Fd\bar{3}n$			[1970Cro]
Si	100	cF8	Fd3m	A4	C (diamond)	[King1]

Table 1 Cs-Si crystal structure data

Cesium, U.S. Atomic Energy Commission Report LAMS-2948, 1963, p 28 (Equi Diagram; Experimental)

- 1963Mcc: J.O. McCaldin and A.E. Widmer, Silicon Heavily Doped by Energetic Cesium Ions, J. Phys. Chem. Solids, 1963, 24(9), p 1073-1080 (Equi Diagram; Experimental)
- **1965Win:** P.M. Winslow, Corrosivity of Cesium, *Corrosion*, 1965, **21**(11), p 341-349 (Equi Diagram; Experimental)
- **1970Cro:** C. Cros, M. Pouchard, and P. Hagenmuller, A New Family of Inorganic Clathrates Isostructural with Gas and Liquid Hydrates, *J. Solid-State Chem.*, 1970, **2**(4), p 570-581, in French (Equi Diagram; Crys Structure; Experimental)

1985Sch: H. Schäfer, On the Problem of Polar Intermetallic Com-

pounds, Ann. Rev. Mater. Sci., 1985, 15, p 1-41 (Crys Structure; Review)

- 1998Sch: H.G. von Schnering, M. Somer, M. Kaupp, W. Carrillo-Cabrera, M. Baitinger, A. Schmeding, and Yu. Grin, The Cluster Anion Si₉^{4–}, *Angew. Chem.*, 1998, 110(17), p 2507-2509, in German; TR, *Angew. Chem. Int. Ed. Engl.*, 1998, 37(17), p 2359-2361. (Equi Diagram; Crys Structure; Experimental; Calculation)
- 2001Bor: H.U. Borgstedt and C. Guminski, IUPAC-NIST Solubility Data Series. 75. Nonmetals in Liquid Alkali Metals, J. Phys. Chem. Ref. Data, 2001, 30(4), p 835-1158 (Equi Diagram; Review, #)

Cs-Si evaluation contributed by **J. Sangster**, Sangster Research Laboratories, P.O. Box 49562, 5122 Cotes des Neiges, Montreal, Quebec, Canada, H3T 2A5. Literature searched through 2004.